Name

Henry Horng-Shing Lu 盧鴻興

Title

Distinguished Professor

Office

Institute of Statistics, National Yang Ming Chiao Tung University, Assembly Building I, 1001 Ta Hsueh Road, Hsinchu 30010,
Taiwan

Fax

+886-3-572-8745

Tel

+886-3-571-2121 ext: 31870
+886-3-5731870

E-mail

henryhslu@nycu.edu.tw

Personal Website:

https://misg.stat.nycu.edu.tw/

Lab Website:

https://lulab.stat.nycu.edu.tw/




EDUCATION

  • Ph.D. in Statistics, Cornell University, USA, 1994.
  • M.S. in Statistics, Cornell University, USA, 1990.
  • B.S. in Electric Engineering, National Taiwan University, Taiwan, 1986.

EXPERIENCE

  • Distinguished Professor, Institute of Statistics, Institute of Data Science and Engineering, Institute of Artificial Intelligence Innovation, National Yang Ming Chiao Tung University, Taiwan, 2022/8-present.
  • Adjunct Professor, Department of Statistics and Data Science, Cornell University, Ithaca, NewYork, USA, 2023/9-present. Reference Link
  • Adjunct Investigator, Department of Medical Research, Taipei Veterans General Hospital, Taiwan, 2021/4-present.
  • Professor, Institute of Statistics, College of Science, National Chiao Tung University that has been merged to National Yang Ming Chiao Tung University, Taiwan, 2002/2-2022/7.
  • Vice President for Academic Affairs, National Chiao Tung University, Taiwan, 2016/1-2021/1.
  • Director, Big Data Research Center, National Chiao Tung University, Taiwan, 2015/7-2018/1.
  • Dean, College of Science, National Chiao Tung University, Taiwan, 2011/8- 2014/7.
  • Chairman, Interdisciplinary Sciences Degree Program, College of Science, National Chiao Tung University, Taiwan, 2008/2-2011/7.
  • Director, Institute of Statistics, College of Science, National Chiao Tung University, Taiwan, 2002/8-2005/7.
  • Associate Professor, Institute of Statistics, College of Science, National Chiao Tung University, Taiwan, 1994/8-2002/1.
  • Section Editor, Public Library of Science (PLOS) Digital Health, 2021-present. Reference Link
  • Editorial Board, Wiley Interdisciplinary Reviews (WIREs) Computational Statistics, 2018-present. Reference Link
  • Associate Editor, Journal of the American Statistical Association (JASA), Theory and Methods, 2017-2020. Reference Link
  • Reviewer Board, Entropy, 2020-present. Reference Link
  • Editorial Board, Journal of Applied Mathematics, International Scholarly Research Network, 2014- 2017. Reference Link
  • Board of Directors, International Chinese Statistical Association (ICSA), 2012-2014. Reference Link
  • Chair, Taiwan Chapter, International Chinese Statistical Association (ICSA), 2023-present. Reference Link
  • Co-editor for Handbook of Big Data Analytics, Springer, 2018. Reference Link
  • Co-editor for Handbook of Statistical Bioinformatics, Springer-Verlag, the first and second editions are published in 2011 and 2022. Reference Link
  • Guest Editor for the Special Issue in International Journal of Systems and Synthetic Biology, 2010.
  • Guest Editor for the Special Issue in Journal of Data Science, July, 2008.
  • Associate Editor for Statistica Sinica, 2005-2008.
  • Associate Editor for Journal of the Chinese Statistical Association, 1995-1997, 2008-2010.
  • Teaching and Research Assistant, Cornell University, 1989-1994.
  • Visiting Scholar, Institute of Pure and Applied Mathematics, UCLA, fall, 2000.
  • Visiting Scholar, Department of Biostatistics, Harvard University, winter, spring and summer, 2001.
  • Visiting Scholar, Department of Ecology and Evolution, University of Chicago, USA, summer, 2002-2007, 2006/02-2007/01.

HONOR

  • Elected Member of the International Statistical Institute (ISI), 2011. Link
  • Principal Fellow of the Higher Education Academy (PFHEA), 2020. Link
  • Outstanding Research Award, Ministry of Science and Technology (MOST), Taiwan, 2022. Link
  • IEEE Senior Member, 2022. Link

RESEARCH INTERESTS

  • Statistics, image science, bioinformatics, data science, machine learning, artificial intelligence, biomedical studies, and industrial applications

PUBLICATIONS

    • Journal Articles
      1. Lu, H. H.-S., Wells, M. T., and Tiwari, R. C., 1994: Inference for Functions in the Two-Sample Problem with Right Censored Data: With Applications. Journal of the American Statistical Association, 89, 427, 1017-1026. Reference Link
      2. Chang, Y. L. C., Lander, L. C., Lu, H.-S, and Wells, M. T. 1994: Bayesian Analysis for Fault Location in Distributed Systems. IEEE Transactions on Reliability, 43, 3, 457-465. Reference Link
      3. Lu, H. H.-S., and Hsieh, F. 1997: Transformation Models for Interval Scale Grouped Data with Applications, Statistica Sinica, 7, 4, 841-854. Reference Link
      4. Lu, H. H.-S., Chen, C.-M., and Yang, I.-H. 1998: Cross-Reference Weighted Least Square Estimates for Positron Emission Tomography. IEEE Transactions on Medical Imaging, 17, 1, 1-8. Reference Link
      5. Lu, H. H.-S. 1998: On the Random Number Generator in the Bootstrap. Journal of the Chinese Statistical Association, 36, 2, 127-144. Reference Link
      6. Chen, C.-M., Lu, H.-S., and Lin, Y.-C. 1998: Evolutionary Snake Model for Ultrasound Image Segmentation: A Preliminary Study. Biomedical Engineering-Applications, Basis and Communications, 10, 2, 110-118. Reference Link
      7. Tu, K.-Y., Chen, T.-B., Lu, H. H.-S., Liu, R.-S., Chou, K.-L., and Chen, J.-C. 1999: Iterative Image Reconstruction with Random Correction for PET Studies. Annals of Nuclear Medicine and Sciences, 12, 4, 195-200. Reference Link
      8. Chen, C.-M., Lu, H. H.-S., and Lin, Y.-C. 2000: An Early Vision Based Snake Model for Ultrasound Image Segmentation. Ultrasound in Medicine and Biology, 26, 2, 273-285. Reference Link
      9. Huang, S.-Y., and Lu, H. H.-S. 2000: Bayesian Wavelet Shrinkage for Nonparametric Mixed-Effects Models. Statistica Sinica, 10, 4, 1021-1040. Reference Link
      10. Huang, S.-Y., and Lu, H. H.-S. 2001: Extended Gauss-Markov Theorem for Nonparametric Mixed-Effects Models. Journal of Multivariate Analysis, 76, 2, 249-266. Reference Link
      11. Chen, C.-M., and Lu, H. H.-S. 2001: An Adaptive Snake Model for Ultrasound Image Segmentation: Modified Trimmed Mean Filter, Ramp Integration and Adaptive Weighting Parameters. Ultrasonic Imaging, 22, 214-236. Reference Link
      12. Chen, C.-M., Lu, H. H.-S., and Han, K.-C. 2001: A Textural Approach Based on Gabor Functions for Texture Edge Detection in Ultrasound Images. Ultrasound in Medicine and Biology, 27, 4, 513-534. Reference Link
      13. Huang, H.-C., Chen, C.-M., Wang, S.-D., and Lu, H. H.-S. 2001: Adaptive Symmetric Mean Filter: A New Noise Reduction Approach Based on the Slope Facet Model. Applied Optics, 40, 29, 5192-5205. Reference Link
      14. Tu, K. Y., Chen, T. B., Lu, H. H. S., Liu, R. S., Chen, K. L., Chen, C. M., and Chen, J. C. 2001: Empirical Studies of Cross-Reference Maximum Likelihood Estimate Reconstruction for Positron Emission Tomography. Biomedical Engineering-Applications, Basis and Communications, 13, 1, 1-7. Reference Link
      15. Chen, C.-M., Lu, H. H. S., and Hsu, Y.-P. 2001: Cross-Reference Maximum Likelihood Estimate Reconstruction for Positron Emission Tomography. Biomedical Engineering-Applications, Basis and Communications, 13, 4, 190-198. Reference Link
      16. Chen, C.-M., Lu, H. H.-S., and Hsiao, A.-T. 2001: A Dual Snake Model of High Penetrability for Ultrasound Image Boundary Extraction. Ultrasound in Medicine and Biology, 27, 12, 1651-1665. Reference Link
      17. Gu, Z., Nicolae, D., Lu, H. H.-S., and Li, W.-H. 2002: Rapid divergence in expression between duplicate genes inferred from microarray data. Trends in Genetics, 18, 12, 609-613. Reference Link
      18. Chen, C.-M., Lu, H. H.-S., and Huang, Y.-S. 2002: Cell-Based Dual Snake Model: A New Approach to Extracting Highly Winding Boundaries in The Ultrasound Images. Ultrasound in Medicine and Biology, 28, 8, 1061-1073. Reference Link
      19. Chen, C.-M., Lu, H. H.-S., and Su, B.-S. 2002: Cell-Based Region Competition for Ultrasound Image Segmentation. Journal of Medical and Biological Engineering, 22, 2, 59-66. Reference Link
      20. Chen, C.-M., Lu, H. H.-S., and Chen, Y.-L. 2003: A Discrete Region Competition Approach Incorporating Weak Edge Enhancement for Ultrasound Image Segmentation. Pattern Recognition Letters, 24, 693-704. Reference Link
      21. Lu, H. H.-S., Huang, S.-Y., and Lin, F.-J. 2003: Generalized Cross-Validation for Wavelet Shrinkage in Nonparametric Mixed-Effects Models. Journal of Computational and Graphical Statistics, 12, 3, 714-730. Reference Link
      22. Qin, H., Lu, H. H.-S., Wu, W. B., and Li, W.-H. 2003: Evolution of the yeast protein interaction network. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 100, 22, 12820-12824. Reference Link
      23. Wu, H.-M., and Lu, H. H.-S. 2004: Supervised Motion Segmentation by Spatial-Frequential Analysis and Dynamic Sliced Inverse Regression. Statistica Sinica, 14, 413-430. Reference Link
      24. Chen, L., Lu, H. H.-S., and Chang, H.-C. 2004: Utilization rates of preventive health services provided for children by the National Health Insurance Program, 1996-2001. Taiwan Journal of Public Health, 23, 1, 37-44. Reference Link
      25. Zhang, L., Lu, H. H.-S., Chung, W.-Y., Yang, J., and Li, W.-H. 2005: Patterns of Segmental Duplications in the Human Genome. Molecular Biology and Evolution, 22, 1, 135-141. Reference Link
      26. Li, L. M., and Lu, H. H.-S. 2005: Explore Biological Pathways from Noisy Array Data by Directed Acyclic Boolean Networks. Journal of Computational Biology, 12, 2, 170-185. Reference Link
      27. Tsai, H.-K., Lu, H. H.-S., and Li, W.-H. 2005: Statistical methods for identifying yeast cell cycle transcription factors. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 102, 38, 13532-13537. Reference Link
      28. Ho, J., Hwang, W.-L., Lu, H. H.-S., and Lee, D. T. 2006: Gridding Spot Centers of Smoothly Distorted Microarray Images. IEEE Transactions on Image Processing, 15, 2, 342-354. Reference Link
      29. Tsai, H.-K., Huang, G. T.-W., Chou, M.-Y., Lu, H. H.-S., and Li, W.-H. 2006: Method for identifying transcription factor binding sites in yeast. Bioinformatics, 22, 14, 1675–1681. Reference Link
      30. Wu, H.-M., and Lu, H. H.-S. 2007: Iterative Sliced Inverse Regression for Segmentation of Ultrasound and MR Images. Pattern Recognition, 40, 12, 3492-3502. Reference Link
      31. Chen, T.-B, Chen, J.-C., Lu, H. H.-S., and Liu, R.-S. 2008: MicroPET Reconstruction with Random Coincidence Correction via a Joint Poisson Model. Medical Engineering & Physics, 30, 6, 680-686. Reference Link
      32. Tzeng, J., Lu, H. H.-S., and Li, W.-H. 2008: Multidimensional Scaling for Large Genomic Data Sets. BMC Bioinformatics, 9:179. Reference Link
      33. Chen, T.-B., Lu, H. H.-S., Lee, Y.-S., and Lan, H.-J. 2008: Segmentation of cDNA Microarray Images by Kernel Density Estimation. Journal of Biomedical Informatics, 41, 1021–1027. Reference Link
      34. Lu, H. H.-S., Chen, C.-M., Huang, Y.-M., and Wu, J.-S. 2008: Computer-Aided Diagnosis of Liver Cirrhosis by Simultaneous Comparisons of the Ultrasound Images of Liver and Spleen. Journal of Data Science, 6, 429-448. Reference Link
      35. Tu, K. K.-W., Lee, J. C.-s., and Lu, H. H.-S. 2009: A Novel Statistical Method for Automatically Partitioning Tools According to Engineers' Tolerance Control in Process Improvement. IEEE Transactions on Semiconductor Manufacturing, 22, 3, 373-380. Reference Link
      36. Scharfe, C., Lu, H. H.-S., Neuenburg, J. K., Allen, E. A., Li, G.-C., Klopstock, T., Cowan, T. M., Enns, G. M., and Davis, R. W. 2009: Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes. PLoS Computational Biology, 5(4): e1000374. Reference Link
      37. Emerson, J. J., Hsieh, L.-C., Sung, H.-M., Wang, T.-Y., Huang, C.-J., Lu, H. H.-S., Lu, M.-Y. J., Wu, S.-H., and Li, W. H. 2010: Natural selection on cis and trans regulation in yeasts. Genome Research, 20, 826-836. Reference Link
      38. Deng, L.-Y. , Lu, H. H.-S., and Chen, T.-B. 2010: 64-Bit and 128-bit DX random number generators. Computing, 89, 1, 27-43. Reference Link
      39. Cheng, J. H., Wang, Y., Chen, P. Y., Chen, T.-B., Chen, C.-J., Li, G.-C., and Lu, H. H.-S. 2010: Mine Barcode of Life: Information Visualization and Fusion for the Environment and Society. International Journal of Systems and Synthetic Biology, 1(1), 63-70.  Reference Link
      40. Lu, H. H.-S., and Wu, H. M. 2010: Visualization, Screening, and Classification of Cell Cycle-Regulated Genes in Yeast. International Journal of Systems and Synthetic Biology, 1(2), 185-198.
      41. Wang, H., Lu, H. H.-S., and Chueh, T.-H. 2011: Constructing Biological Pathways by a Two-Step Counting Approach, PLoS ONE 6(6): e20074. Reference Link
      42. Deng, L.-Y. , Shiau, J.-J. H., and Lu, H. H.-S. 2011: Large-order multiple recursive generators with modulus $2^{31}-1$, INFORMS Journal on Computing, Published online before print, October 17, 2011. Reference Link
      43. Deng, L.-Y. , Shiau, J.-J. H., and Lu, H. H.-S. 2012: Efficient computer search of large-order multiple recursive pseudo-random number generators, Journal of Computational and Applied Mathematics, 236, 3228– 3237. Reference Link
      44. Chiang, S, Swamy, K. B., Hsu, T. W., Tsai, Z. T., Lu, H. H.-S., Wang, D., and Tsai, H. K. 2012: Analysis of the association between transcription factor binding site variants and distinct accompanying regulatory motifs in yeast, Gene. 491(2):237-45. Reference Link
      45. Chueh, T.-H., and Lu, H. H.-S., 2012: Inference of Biological Pathway from Gene Expression Profiles by Time Delay Boolean Networks, PLoS ONE 7(8): e42095. Reference Link
      46. Suen, S., Lu, H. H.-S., and Yeang, C. H.. 2012: Evolution of domain architectures and catalytic functions of enzymes in metabolic systems, Genome Biology and Evolution, 2012. Reference Link
      47. Chen, T.-B, Chen, J.-C., and Lu, H. H.-S. 2012: Segmentation of 3D microPET Images of the Rat Brain via the Hybrid Gaussian Mixture Method with Kernel Density Estimation, Journal of X-ray Science and Technology, 20, 339-349. Reference Link
      48. Chueh, T.-H., Chen, T.-B., Lu, H. H.-S., Ju, S.-S., Tao, T.-H., and Shaw, J. H. 2012: Statistical Prediction of Emotional States by Physiological Signals with MANOVA and Machine Learning, International Journal of Pattern Recognition and Artificial Intelligence, 26, 1250008. Reference Link
      49. Chen, T.-B, Lu, H. H.-S., Kim, H.-K., Son, Y.-D., and Cho, Z. H. 2014: Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT, Radiation Physics and Chemistry, 96, 107–114. Reference Link
      50. Helou, E. S., Censor, Y., Chen. T. B., Chen, I-L., De Pierro, A.R., Jiang, M., Lu, H. H.-S. 2014: String-Averaging Expectation-Maximization for Maximum Likelihood Estimation in Emission Tomography, Inverse Problems, 30 055003. Reference Link
      51. Hung, H., Liu, C.-Y., Lu, H. H.-S. 2016: Sufficient dimension reduction with additional information. Biostatistics, 17, 3, 405-421. Reference Link
      52. Lin, C.-M., Chang, Y.-J., Liu, C.-K., Yu, C.-S., Lu, H. H.-S. 2016: Role of Extracranial Carotid Duplex and Computed Tomography Perfusion Scanning in Evaluating Perfusion Status of Pericarotid Stenting, BioMed Research International, Article ID 7051856. Reference Link
      53. Yu, C.-S., Lin, C.-M., Liu, C.-K., Lu, H. H.-S., 2016: Impact of baseline characteristics on outcomes of carotid artery stenting in acute ischemic stroke patients, Therapeutics and Clinical Risk Management, 12 495–504. Reference Link
      54. Lin, C.-M., Chang, Y.-J., Liu, C.-K., Yu, C.-S., Lu, H. H.-S., 2016: First-ever ischemic stroke in elderly patients: predictors of functional outcome following carotid artery stenting, Clinical Interventions in Aging, 11:985-995. Reference Link
      55. Chen, S., Deng, L.-Y., Bowman, D., Shiau, J.-J. H., Wong, T.-Y., Madahian, B., Lu, H. H.-S., 2016: Phylogenetic tree construction using trinucleotide usage profile (TUP), BMC Bioinformatics, 17(Suppl 13):381. Reference Link
      56. Chen, C.-H., Tu, C.-C, Kuo, H.-Y., Zeng, R.-F., Yu, C.-S., Lu, H. H.-S., Liou, M.-L., 2017: Dynamic change of surface microbiota with different environmental cleaning methods between two wards in a hospital, Applied Microbiology and Biotechnology, 101, 2, 771–781. Reference Link
      57. Yang, S.-H., Chen, Y.-Y., Lin, S.-H., Liao, L.-D., Lu, H. H.-S., Wang, C.-F., Chen, P.-C., Lo, Y.-C., Phan, T. D., Chao, H.-Y., Lin, H.-C., Lai, H.-Y., Huang, W.-C., 2016: A sliced inverse regression (SIR) decoding the forelimb movement from neuronal spikes in the rat motor cortex, Frontiers in Neuroscience. Reference Link
      58. Lin, C.-M., Su, J.-C., Chang, Y.-J., Liu, C.-K., Lu, H. H.-S., Jong, Y.-J., 2017: Is carotid sonography a useful tool for predicting functional capabilities in ischemic stroke patients following carotid artery stenting?, Medicine, 96, 12, e6363. Reference Link
      59. Hung, H., Lu, H. H.-S., 2017: A review on the generalization of sufficient dimension reduction methods with the additional information, Wiley Interdisciplinary Reviews: Computational Statistics. Reference Link
      60. Chen, C.-H., Kuo, H.-Y., Hsu, P.-J., Chang, C.-M., Chen, J.-Y., Lu, H. H.-S., Chen, H. Y., Liou, M.-L., 2018: Clonal spread of carbapenem-resistant Acinetobacter baumannii across a community hospital and its affiliated long-term care facilities: A cross sectional study, Journal of Microbiology, Immunology and Infection, 51, 3, 377-384. Reference Link
      61. Simak, M., Yeang, C.-H, Lu, H. H.-S., 2017: Exploring Candidate Biological Functions by Boolean Function Networks for Saccharomyces cerevisiae, PLoS ONE 12(10): e0185475. Reference Link
      62. Chen, P. J., Lin, M. C., Lai, M. J., Lin, J. C., Lu, H. H. S., Tseng, V. S., 2018: Accurate Classification of Diminutive Colorectal Polyps Using Computer-aided Analysis, Gastroenterology, 154, 3, 568–575. Reference Link
      63. Chen, C.-C., Juan, H.-H., Tsai, M.-Y., Lu, H. H.-S., 2018: Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning, Scientific Reports, 8, Article number: 557. Reference Link
      64. Chen, S.-H., Kuo, W.-Y., Su, S.-Y., Chung, W.-C., Ho, J.-M., Lu, H. H.-S. , Lin, C.-Y. 2018: A gene profiling deconvolution approach to estimating immune cell composition from complex tissues, BMC Bioinformatics, 19(Suppl 4):154. Reference Link
      65. Deng, L.-Y., Shiau, J.-J. H., Lu, H. H.-S., and Bowman, D., 2018: Secure and Fast Encryption (SAFE) with Classical Random Number Generators, ACM Transactions on Mathematical Software, 44, 4, Article No. 45. Reference Link
      66. Ko, M. L., Wei, K. L., Ho, Y.-J., Peng, P. H., Lu, H. H.-S., 2019: Knowledge of Medications Among Patients with Glaucoma in Taiwan, Journal of the Formosan Medical Association, 118, 1, 457-462. Reference Link
      67. Fang, S. T., Cheng, D. E., Huang, Y. T., Hsu, T. Y., Lu, H. H.-S., 2018: A Pilot Study of the Influence of Probiotics on Hair Toxic Element Levels After Long-Term Supplement with Different Lactic Acid Bacteria Strains, Journal of Probiotics and Health, 6(1): 203. Reference Link
      68. Huang, W.-Q., Lin, W.-W., Lu, H. H.-S., Yau, S. T., 2019: iSIRA: Integrated Shift-Invert Residual Arnoldi Method for Graph Laplacian Matrices from Big Data, Journal of Computational and Applied Mathematics, 346, 518-531. Reference Link
      69. Lin, C.-M., Liu, C.-K., Chang, Y.-J., Chen, W.-L., Lu, H. H.-S., 2018: Reversed ophthalmic artery flow following ischemic stroke: A possible predictor of outcomes following carotid artery stenting. Neurological Research, 132-138. Reference Link
      70. Chen, C.-C., Tsai, M.-Y., Kao, M.-Z., Lu, H. H.-S., 2019: Medical Image Segmentation with Adjustable Computational Complexity Using Data Density Functionals, Applied Sciences, 9(8), 1718. Reference Link
      71. Simak, M., Lu, H. H.-S., Yang, J.-M. 2019: Boolean function network analysis of time course liver transcriptome data to reveal novel circadian transcriptional regulators in mammals, Journal of the Chinese Medical Association, 82, 11, 872–880. Reference Link
      72. Su, F.-Y., Wang, S.-H., Lu, H. H.-S., Lin, G.-M. 2020: Association of Tobacco Smoking with Physical Fitness of Military Males in Taiwan: The CHIEF Study, Canadian Respiratory Journal, Article ID 5968189. Reference Link
      73. Chen, H.-H., Liu, C.-M., Chang, S.-L., Chang, P. Y.-C., Chen, W.-S., Pan, Y.-M., Fang, S.-T., Zhan, S.-Q., Chuang, C.-M., Lin, Y.-J., Shiu, Y.-C., Chen, S.-A., Lu, H. H.-S., 2020: Automated extraction of left atrial volumes from two-dimensional computer tomography images using a deep learning technique, International Journal of Cardiology, 316, 272-278. Reference Link
      74. Lin, G.-M., Lu, H. H.-S., 2020: A 12-Lead ECG-Based System With Physiological Parameters and Machine Learning to Identify Right Ventricular Hypertrophy in Young Adults, IEEE Journal of Translational Engineering in Health and Medicine, Article Number: 1900510. Reference Link
      75. Chen, K.-C., Yu, H.-R., Chen, W.-S., Lin, W.-C., Lee, Y.-C., Chen, H.-H., Jiang, J.-H., Su, T.-Y., Tsai, C.-K., Tsai, T.-A., Tsai, C.-M., Lu, H. H.-S., 2020: Diagnosis of common pulmonary diseases in children by X-ray images and deep learning, Scientific Reports, 10, Article number: 17374. Reference Link
      76. Liu, C.-M., Chang, S.-L., Chen, H.-H., Chen, W.-S., Lin, Y.-J., Lo, L.-W., Hu, Y.-F., Chung, F.-P., Chao, T.-F., Tuan, T.-C., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Wu, C.-I., Kuo, L., Wu, M.-H., Chen, C.-K., Chang, Y.-Y., Shiu, Y.-C., Lu, H. H.-S., Chen, S.-A., 2020: The Clinical Application of the Deep Learning Technique for Predicting Trigger Origins in Patients With Paroxysmal Atrial Fibrillation With Catheter Ablation, Circulation: Arrhythmia and Electrophysiology, Vol 13, No: 11. Reference Link
      77. Wu, C.-H., Lu, H. H.-S., Hang, H.-M., 2020: Budgeted Passive-Aggressive Learning for Online Multiclass Classification, IEEE Access, 8, 227420-227437. Reference Link
      78. Su, F.-Y., Lin, Y.-P, Lin, F., Yu, Y.-S., Kwon, Y., Lu, H. H.-S., Lin, G.-M., 2020: Comparisons of traditional electrocardiographic criteria for left and right ventricular hypertrophy in young Asian women: the CHIEF heart study. Medicine, 99:42, e22836. Reference Link
      79. Chen, J.-J., Su, T.-Y., Chen, W.-S., Chang, Y.-H., Lu, H. H.-S., 2021: Convolutional Neural Network in the Evaluation of Myocardial Ischemia from CZT SPECT Myocardial Perfusion Imaging: Comparison to Automated Quantification, Applied Sciences, 11(2), 514. Reference Link
      80. Tai, Y.-L., Huang, S.-J., Chen, C.-C., Lu, H. H.-S., 2021: Computational Complexity Reduction of Neural Networks of Brain Tumor Image Segmentation by Introducing Fermi–Dirac Correction Functions, Entropy, 23(2), 223. Reference Link
      81. Chou, Y.-B., Hsu, C.-H., Chen, W.-S., Chen, S.-J., Hwang, D.-K., Huang, Y.-M., Li, A.-F., Lu, H. H.-S., 2021: Deep Learning and Ensemble Stacking Technique for Differentiating Polypoidal Choroidal Vasculopathy from Neovascular Age-Related Macular Degeneration, Scientific Reports, 11, Article number: 7130. Reference Link
      82. Li, Y.-C., Chen, H.-H., Lu, H. H.-S., Wu, H.H.-T., Chang, M.-C., Chou, P.-H., 2021: Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists?, Clinical Orthopaedics and Related Research, 479(7):p 1598-1612. Reference Link
      83. Huang, T.-Y., Zhan, S.-Q., Chen, P.-J., Yang, C.-W., Lu, H. H.-S., 2021: Accurate diagnosis of endoscopic mucosal healing in ulcerative colitis using deep learning and machine learning, Journal of the Chinese Medical Association, 84, 7, 678-681. Reference Link
      84. Li, C.-C., Wu, M.-Y., Sun, Y.-C., Chen, H.-H., Wu, H.-M., Fang, S.-T., Chung, W.-Y., Guo, W.-Y., Lu, H. H.-S., 2021: Ensemble classifcation and segmentation for intracranial metastatic tumors on MRI images based on 2D U-nets, Scientific Reports, 11, Article number: 20634. Reference Link
      85. Sun, Y.-C., Hsieh, A.-T., Fang, S.-T., Wu, H.-M., Kao, L.-W., Chung, W.-Y., Chen, H.-H, Liou, K.-D., Lin, Y.-S., Guo, W.-Y., Lu, H. H.-S., 2021: Can 3D artificial intelligence models outshine 2D ones in the detection of intracranial metastatic tumors on magnetic resonance images? Journal of the Chinese Medical Association, 84, 10, 956-962. Reference Link
      86. Lin, G.-M., Lu, H. H.-S., 2021: Electrocardiographic Machine Learning to Predict Left Ventricular Diastolic Dysfunction in Asian Young Male Adults, IEEE Access, 9, 49047-49054. Reference Link
      87. Ko, Y.-C., Chen, W.-S., Chen, H.-H., Hsu, T.-K., Chen, Y.-C., Liu, C.J.-L., Lu, H. H.-S., 2022: Widen the Applicability of a Convolutional Neural-Network-Assisted Glaucoma Detection Algorithm of Limited Training Images across Different Datasets, Biomedicines, 10, 1314. Reference Link
      88. Kao, C.-L., Lin, C.-M., Chang, S.-W., Liu, C.-K., Ou, Y.-H., Lu, H. H.-S., 2022: The age factor influencing long-term physical functionality in stroke patients undergoing intra-arterial thrombectomy treatment, Medicine, 101(38):e30712. Reference Link
      89. Tsai, M.-C., Lu, H. H.-S., Chang, Y.-C., Huang, Y.-C., Fu, L.-S., 2022: Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach, JMIR Medical Informatics 10(11):e40878. Reference Link
      90. Chou, P.-H., Jou, T. H.-T., Wu, H.-T. H., Yao, Y.-C., Lin, H.-H., Chang, M.-C., Wang, S.-T., Lu, H. H.-S., Chen, H.-H., 2022: Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine, The Spine Journal, 22, 4, 511-523. Reference Link
      91. Su, T.-Y., Chen, J.-J., Chen, W.-S., Chang, Y.-H., Lu, H. H.-S., 2023: Deep learning for myocardial ischemia auxiliary diagnosis using CZT SPECT myocardial perfusion imaging, Journal of the Chinese Medical Association 86(1):p 122-130. Reference Link
      92. Deng, L.-Y., Winter, B. R., Shiau, J.-J. H., Lu, H. H.-S., Kumar, N., Yang, C.-C., 2023: Parallelizable efficient large order multiple recursive generators, Parallel Computing doi: 10.1016/j.parco.2023.103036. Reference Link
      93. Lee, Y.-H., Hsieh, M.-T., Chang, C.-C., Tasi, Y.-L., Chou, R.-H., Lu, H. H.-S., Huang, P.-H., 2023: Improving detection of obstructive coronary artery disease with an artificial intelligence-enabled electrocardiogram algorithm, Atherosclerosis, doi: 10.1016/j.atherosclerosis.2023.117238. Reference Link
      94. Huang, S.-J., Chen, C.-C., Kao, Y., Lu, H. H.-S., 2023: Feature-aware unsupervised lesion segmentation for brain tumor images using fast data density functional transform, Scientific Reports, 13, Article number:13582 Reference Link
      95. Deng, L.-Y., Yang, C.-C., Dale Bowman, Dennis K. J. Lin, Lu, H. H.-S., 2023: Big Data Model Building using Dimension Reduction and Sample Selection, Journal of Computational and Graphical Statistics. Reference Link
      96. Wu, J. C.-H., Yu, H.-W., Tsai, T.-H., Lu, H. H.-S., 2023: Dynamically Synthetic Images for Federated Learning of Medical Images, Computer Methods and Programs in Biomedicine, S0169-2607(23)00511-4. Reference Link
      97. Chen, H.-H., Lu, H. H.-S., Weng, W.-H., Lin, Y.-H., 2023: Developing a Machine Learning Algorithm to Predict the Probability of Medical Staff Work Mode Using Human-Smartphone Interaction Patterns: Algorithm Development and Validation Study, Journal of Medical Internet Research, 25:e48834. Reference Link
      98. Chen, W.-W., Tseng, C.-C., Huang, C.-C., Lu, H. H.-S., 2024: Improving deep-learning electrocardiogram classification with an effective coloring method, Artificial Intelligence in Medicine, Volume 149, 102809. Reference Link
      99. Chang, T.-H., Chen, Y.-D., Lu, H. H.-S., Wu, J. L. M., Mak, K. H., Yu, C.-S., 2024: Specific patterns and potential risk factors to predict 3-year risk of death among non-cancer patients with advanced chronic kidney disease by machine learning, Medicine, 103(7):p e37112. Reference Link
      100. Liu, C.-M., Chen, W.-S., Chang, S.-L., Hsieh, Y.-C., Hsu, Y.-H., Chang, H.-X., Lin, Y.-J., Lo, L.-W., Hu, Y.-F., Chung, F.-P., Chao, T.-F., Tuan, T.-C., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Kuo, L., Wu, C.-I., Wu, M.-H., Chen, C.-K., Chang, Y.-Y., Shiu, Y.-C., Lu, H. H.-S., Chen, S.-A., 2024: Use of artificial intelligence and I-Score for prediction of recurrence before catheter ablation of atrial fibrillation, International Journal of Cardiology, doi:10.1016/j.ijcard.2024.131851 Reference Link
      101. Lin, C.-Y., Wu, J. C.-H., Kuan, Y.-M., Liu, Y.-C., Chang, P.-Y., Chen, J.-P., Lu. H. H.-S., Lee, O. K.-S., 2024: Precision Identification of Locally Advanced Rectal Cancer in Denoised CT Scans Using EfficientNet and Voting System Algorithms, Bioengineering, 11(4), 399. Reference Link
      102. Chen, W.-W., Kuo, L., Lin, Y.-X., Yu, W.-C., Tseng, C.-C., Lin, Y.-J., Huang, C.-C., Chang, S.-L., Wu, J. C.-H., Chen, C.-K., Weng, C.-Y., Chan, S., Lin, W.-W., Hsieh, Y.-C., Lin, M.-C., Fu, Y.-C., Chen, T., Chen, S.-A., Lu. H. H.-S., 2024: A Deep Learning Approach to Classify Fabry Cardiomyopathy from Hypertrophic Cardiomyopathy Using Cine Imaging on Cardiac Magnetic Resonance, International Journal of Biomedical Imaging, vol. 2024, Article ID 6114826, 9 pages. Reference Link
      103. Wu, J. C.-H., Liao, N.-C., Yang, T.-H., Hsieh, C.-C., Huang, J.-A., Pai, Y.-W., Huang, Y.-J., Wu, C.-L., Lu. H. H.-S., 2024: Deep-Learning-Based Automated Anomaly Detection of EEGs in Intensive Care Units, Bioengineering , 11(5), 421. Reference Link
      104. Su, T.-Y., Wu, J. C.-H., Chiu, W.-C., Chen, T.-J., Lo, W.-L., Lu, H. H.-S., 2024: Automatic classification of temporomandibular joint disorders by magnetic resonance imaging and convolutional neural networks, Journal of Dental Sciences, doi:10.1016/j.jds.2024.06.001 Reference Link
      105. Hsu, Y.-L., Chen, P.-C., Tsai, Y.-F., Wei, C.-H., Wu, L. S.-H., Hsieh, K.-S., Hsieh, M.-H., Lai, H.-C., Lin, C.-H., Lin, H.-C., Chen, C.-H., Chen, A.-C., Lin, H.-C., Chou, I.-C., Soong, W.-J., Hwang, K.-P., Lu, H. H.-S., Pawankar, R., Tsai, H.-J., Wang, J.-Y., 2024: Clinical Features and Vaccination Effects among Children with Post-Acute Sequelae of COVID-19 in Taiwan, Vaccines, 12(8), 910. Reference Link
      106.  

    • Conference Papers
    1. Chang, Y. L. C., Lander, L. C., Lu, H.-S., and Wells, M. T. 1993a: Bayesian Analysis for Fault Location in Homogeneous Distributed Systems. Proceedings of the IEEE Symposium on Reliable Distributed Systems, 44-53, Princeton, New Jersey.
    2. Chang, Y. L. C., Lander, L. C., Lu, H.-S., and Wells, M. T. 1993b: Bayesian Inference for Fault Diagnosis in Real-Time Distributed Systems. The Second Asian Test Symposium (ATS’93). 333-338, Beijing.
    3. Lu, H. H.-S., and Chang, Y. L. C. 1995: Issues in the Assignment of Fault Diagnosis Time for Responsive Computing Systems. Proceedings of ISSAT International Conference of Reliability and Quality in Design, 238-242, Orlando, Florida.
    4. Lu, H. H.-S., and Tseng, W.-J. 1997: On Accelerated Cross-Reference Maximum Likelihood Estimates for Positron Emission Tomography. Proceedings of the IEEE Nuclear Science Symposium, Volume 2, 1484 -1488.
    5. Chen, J. C., Tu, K. Y., Lu, H. H.-S., Chen, T. B., Chou, K. L., and Liu, R. S. 1998: Statistical Image Reconstruction for PET Studies. The Biomedical Engineering Society 1998 Annual Symposium, 71-72.
    6. Tu, K. Y., Chen, J. C., Lu, H. H.-S., Chen, T. B., Chou, K. L., and Liu, R. S. 1999: Iterative Image Reconstruction with Random Coincidence Correction for PET Studies. The Biomedical Engineering Society 1999 Annual Symposium, 357-358.
    7. Chen, J. C., Liu, R. S., Tu, K. Y., Lu, H. H. S., Chen, T. B., and Chou, K. L. 2000: Iterative Image Reconstruction with Random Correction for PET studies. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 3979, 1218-1229. Reference Link
    8. Chen, J. C., Tu, K. Y., Lu, H. H.-S., Chen, T. B., Chou, K. L., and Liu, R. S. 2000: Iterative Image Reconstruction with Random Correction for PET Studies. SPIE medical imaging 2000 symposium.
    9. Tu, K. Y., Chen, J. C., Lu, H. H.-S., Chen, T. B., Chou, K. L., and Liu, R. S. 2000: Random Correction Using Iterative Reconstruction for PET. European Association of Nuclear Medicine Annual Congress.
    10. Lu, H. H.-S., Chen, C.-M., and Wu, J.-S. 2001: Statistical Analysis of Liver Cirrhosis in Ultrasound Images by Fractal Dimension, Dimension Reduction and Classification Trees. The 5th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2001), Vol. XIII, Part II, 351-356.
    11. Chen, C.-M., and Lu, H. H.-S., 2001: Sonographic Tumor Boundary Detection for Image-Guided Brain Surgery. The 5th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2001), Vol. XIII, Part II, 339-344.
    12. Lu, H. H.-S., and Wu, H.-M. 2003: On Visualization, Screening, and Classification of Cell Cycle-Regulated Genes in Yeast. The 14th International Conference on Genome Informatics (GIW2003), 344-345.
    13. Chen, C.-H., Lu, H. H.-S., Liao, C.-T., Chen, C.-h., Yang, U.-C., Lee, Y.-S. 2003: Gene Expression Analysis Refining System (GEARS) via Statistical Approach: A Preliminary Report. The 14th International Conference on Genome Informatics (GIW2003), 316-317.
    14. Ho, J., Hwang, W.-L., Lu, H. H.-S., and Lee, D. T. 2005: Gridding the spot centers of Microarray Images. European Signal Processing Conference, Antalya, Turkey, September 4-8.
    15. Lu, H. H.-S. 2006: Reconstruction, Visualization and Analysis of Medical Images. Compstat 2006 Satellite Workshop on Data and Information Visualization, Berlin, Germany, August 23-25.
    16. Chen, P. Y., Chen, T.-B., Chen, C.-J., Li, G.-C., Lu, H. H.-S. 2007: Information Visualization and Fusion for Barcodes of Life in Environment and Society. The Second International Barcode of Life Conference, Taipei, Taiwan, September 17-21.
    17. Liu, P.-L., Lu, H. H.-S., Chiang. A.-S. 2007: Automatic Classification of 3D Drosophila Calyx Images. 2007 National Computation Symposium, Taichung, Taiwan, December 20-21.
    18. Wu, T.-Y., Juan, H. H., Lu, H. H.-S., Chiang. A.-S. 2011: A Crosstalk Tolerated Neural Segmentation Methodology for Brainbow Images, International Symposium on Applied Sciences in Biomedical and Communication Technologies (ACM ISABEL).
    19. Wu, T.-Y., Juan, H. H., Lu, H. H.-S. 2012: Improved Spectral Matting By Iterative K-Means Clustering And The Modularity Measure, IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP).
    20. Li, C.-Y., Chou, H.-P., Deng, L.-Y., Shiau, J.-J. H., Lu, H. H.-S. 2012: Non-linear pseudo-random number generators via coupling DX generators with the Logistic map, Anti-counterfeiting, Security, and Identification, 2012, pp. 1-5, doi: 10.1109/ICASID.2012.6325284. Reference Link
    21. Hsu, Y., Lu, H. H.-S. 2013: Brainbow image segmentation using Bayesian sequential partitioning, International Conference on Medical Informatics and Biomedical Engineering.
    22. Hsu, Y., Lu, H. H.-S. 2014: Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing, International Conference on Soft Computing and Data Mining.
    23. Wu, C.-H., Hsi, W.-C., Lu, H. H.-S., Hang, H.-M., 2017: Online Multiclass Passive-Aggressive Learning on a Fixed Budget, IEEE International Symposium on Circuits and Systems (IEEE ISCAS).
    24. Zhan, S.-Q., Huang, T.-T., Lu, H. H.-S, 2018: Accurate Diagnosis of Endoscopic Mucosal Healing in Ulcerative Colitis by Deep Learning and Machine Learning, Best Abstract, The 6th Annual Meeting of the Asian Organization for Crohn's and Colitis (AOCC2018).
    25. Chung, C.-E., Lin, S.-H., Hsu, H.-C., Lu, H. H.-S, 2018: Segmenting learning with convolutional Neural Network to extract features and build the classifier: an application to endoscope image classification for treatment planning of cervical pre-cancerous lesions, Society for Epidemiologic Research's 51th Annual Meeting.
    26. Chang, P. Y.-C., Chuang, C.-M., Fang, S.-T., Zhan, S.-Q., Pan, Y.-M., Liu, C.-M., Chang, S.-L., Lin, Y.-J., Lu, H. H.-S., Chen, S.-A., 2018: Applying Transfer Learning and Deep Convolutional Neural Networks to Automatically Detect Left Atrium in 2D Cardiac Computed Tomographic Images, The Asia Pacific Heart Rhythm Society (APHRS).
    27. Pan, Y.-M., Fang, S.-T., Chang, P. Y.-C., Chuang, C.-M., Liu, C.-M., Chang, S.-L., Lin, Y.-J., Chen, S.-A., Lu, H. H.-S., 2018: Using U-Net for Fully Automated Semantic Segmentation of the Left Atrium in 2D Cardiac Computed Tomographic Images, The Asia Pacific Heart Rhythm Society (APHRS).
    28. Lin, Y.-S., Wu, C.-H., Lu, H. H.-S., 2019: Budgeted Algorithm for Linearized Confidence-Weighted Learning, The Third International Conference on Cloud and Big Data Computing (ICCBDC), Excellent Oral Presentation.
    29. Almuhayar, M., Lu, H. H.-S., Iriawan, N., 2019: Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet, The Third International Conference on Informatics and Computational Sciences (ICICoS).
    30. Liu, C.-M., Chang, S.-L., Chen, H.-H., Chen, W.-S., Lin, Y.-J., Lo, L.-W., Hu, Y., Chung, F.-P., Tuan, T.-C., Chao, T.-F., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Wu, C.-I., Chen, C.-C., Chin, C.-G., Liu, S.-H., Cheng, W.-H., Huang, S.-H., Chou, C.-Y., Lugtu, I. C., Shiu, Y.-C., Lu, H. H.-S., Chen, S.-A., 2020: The Clinical Application Of The Deep Learning Technique For Predicting Trigger Origins In Paroxysmal Atrial Fibrillation Patients With Catheter Ablation, The Heart Rhythm Society (HRS).
    31. Liu, C.-M., Chang, S.-L., Chen, H.-H., Chen, W.-S., Lin, Y.-J., Lo, L.-W., Hu Y., Chung, F.-P., Tuan, T.-C., Chao, T.-F., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Wu, C.-I., Chen, C.-C., Liu, S.-H., Cheng, W.-H., Huang, S.-H., Chou, C.-Y., Lugtu, I. C., Shiu Y.-C., Lu, H. H.-S., Chen, S.-A., 2020: Using A Deep Learning Technique To Automatize Extraction Of Left Atrial Volumes From Two-dimensional Computer Tomography Images, The Heart Rhythm Society (HRS).
    32. Liu, C.-M., Chang, S.-L., Chen, H.-H., Chen, W.-S., Lin, Y.-J., Lo, L.-W., Hu Y., Tuan, T.-C., Chao, T.-F., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Wu, C.-I., Chen, C.-C., Chin, C.-G., Liu, S.-H., Cheng, W.-H., Chou, C.-Y., Lugtu, I. C., Shiu, Y.-C., Lu, H. H.-S., Chen, S.-A., 2020: Automated Extraction Of Left Atrial Volumes From Two-dimensional Computer Tomography Images Using A Deep Learning Technique Can Predict Post-ablation One Year Recurrence Of Atrial Fibrillation, The Heart Rhythm Society (HRS).
    33. Chou, P.-H., Li, Y.-C., Chen, H.-H., Chang, M.-C., Wu. H.-T. H., Lu, H. H.-S., 2020: Application of artificial intelligence deep learning ensemble model for detection of thoracic and lumbar vertebral fracture on the lateral view of plain radiographs, The 49th Annual Meeting of the Japanese Society for Spine Surgery and Related Research (49th JSSR).
    34. Ko, Y.-C., Chen, W.-S., Chen, H.-H., Liu, C., Lu, H. H.-S., 2020: Identifying glaucoma from fundus images of first-visit patients with various ocular pathology using deep learning, The 2020 World Ophthalmology Congress (WOC 2020).
    35. Deng, L.-Y., Dale Bowman, Yang, C.-C., Lu, H. H.-S., 2021: Extending RC4 to Construct Secure Random Number Generators, 2021 Annual Modeling and Simulation Conference (ANNSIM). Reference Link
    36. A. Muhaimin, D.D. Prastyo, Lu, H. H.-S., 2021: Forecasting with Recurrent Neural Network in Intermittent Demand Data, 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 802-809. Reference Link
    37. Hu, Y.-F., Liu, C.-M., Chen, W.-W., Wu, I.-C., Chen, P.-F., Lin, Y.-J., Chang, S.-L., Lo, L.-W., Chung, F.-P., Chao, T.-F., Tuan, T.-C., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Kuo, L., Wu, C.-I., Liu, S.-H., Lu, H. H.-S., Chen, S.-A. 2023:PO-04-183, Artificial Intelligence-enabled Model for Early Detection of Atrial Fibrillation During Sinus Rhythm and Mortality Risk Stratification, Heart Rhythm, Vol 20, No 5S, S614. Reference Link
    38. Liu, C.-M., Chang, S.-L., Chen, W.-S., Lin, Y.-J., Lo, L.-W., Hu, Y.-F., Chung, F.-P., Chao, T.-F., Tuan, T.-C., Liao, J.-N., Lin, C.-Y., Chang, T.-Y., Wu, C.-I., Kuo, I., Wu, M.-H., Chen, C.-K., Chang, Y.-Y., Shiu, Y.-C., Lu, H. H.-S., Chen, S.-A., 2023:PO-04-208, Clinical Application of Artificial Intelligence in Prediction of Recurrence in Atrial Fibrillation Patients with Catheter Ablation, Heart Rhythm, Vol 20, No 5S, S616-S617. Reference Link
    39. Chen, Y.-W., Tsai, M.-J., Lu, H. H.-S., Feng, K.-T., Lee, T.-S., Lan, J.-C., 2024: Efficient TIS Sensitivity Measurement With Machine Learning Approach and 5G Dataset, IEEE 21st Consumer Communications & Networking Conference (CCNC). Reference Link

  • Books and Book Chapters:

    1. Lu, H. H.-S., 2008: Reconstruction, Visualization, and Analysis of Medical Images. Handbook of Computational Statistics (Volume III) Data Visualization, C.-h. Chen, W. Hardle, and A. Unwin (eds), 813-830, Springer-Verlag. Reference Link
    2. Chueh, T.-H., Lu, H. H.-S., 2011: Boolean Networks. Handbook of Statistical Bioinformatics, H. H.-S. Lu, B. Scholkopf, and H. Zhao (eds), 405-426, Springer-Verlag. Reference Link
    3. Lu, H. H.-S., Scholkopf, B., Zhao, H. (eds), 2011: Handbook of Statistical Bioinformatics , Springer-Verlag. Reference Link
    4. Tsai, M.-Y., Chen, T.-B., Lu, H. H.-S., 2014: Statistical Segmentation Methods for DNA Microarray Images, Microarray Image and Data Analysis: Theory and Practice, L. Rueda (ed), 149-170, CRC Press. Reference Link
    5. Chen, C.-C., Juan, H. H., Tsai, M.-Y., Lu, H. H.-S., 2018: Bridging Density Functional Theory and Big Data Analytics with Applications. Handbook of Big Data Analytics, Hardle, W. K., Lu, H. H.-S., Shen, X. (eds), 351-374, Springer-Verlag. Reference Link
    6. Hardle, W. K., Lu, H. H.-S., Shen, X. (eds), 2018: Handbook of Big Data Analytics, Springer-Verlag. Reference Link
    7. Niu, W.-F., Lu, H. H.-S., 2020: Measuring the Collective Correlation of a Large Number of Stocks. Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning, Volume I, C. F. Lee and J. C. Lee (eds), World Scientific. Reference Link
    8. Simak, M., Lu, H. H.-S., Yeang, C.-H., Yang, J.-M. 2020: Boolean Function Networks. Boolean Logic, Expressions and Theories: An Overview, V. C. Carlsen (ed), Nova. Reference Link
    9. Lu, H. H.-S., Scholkopf, B., Wells, M. T., Zhao, H., 2022: Handbook of Statistical Bioinformatics, Second Edition, Springer-Verlag. Reference Link
    10. Tsai, M.-Y., Lu, H. H.-S., 2022: Integration of Boolean and Bayesian Networks, Handbook of Statistical Bioinformatics, Second Edition, 173–185. Reference Link
    11. Niu, W.-F., Lu, H. H.-S., 2024: A Factor Model for Graph Data,Handbook of Investment Analysis, Portfolio Management, and Financial Derivatives, 3277–3298, World Scientific. Reference Link
  • Technical Reports
    1. Su-Yun Huang and Henry Horng-Shing Lu, "Bayesian Wavelet Shrinkage orem for Nonparametric Mixed-Effects Models", Attach FileAttach File Adobe PDF
    2. Su-Yun Huang & Henry Horng-Shing Lu, "Extended Gauss-Markov Theorem for Nonparametric Mixed-Effects Models" , Attach FileAttach File Adobe PDF
    3. Han-Ming Wu and Henry Horng-Shing Lu, "Supervised Motion Segmentation by Spatial-Frequential Analysis and Dynamic Sliced Inverse Regression" , Attach FileAttach File Adobe PDF
    4. Henry Horng-Shing Lu, Su-Yun Huang, Fang-Jiun Lin, "Generalized Cross-Validation for Wavelet Shrinkage in Nonparametric Mixed-Effects Models" , 2002-08 Attach FileAttach File Adobe PDF
  • Others
    1. Lu, H. H.-S., "Statistical Applications in Medical Images and Bioinformatics" , Reference LinkReference Link
    2. Lu, H. H.-S., "Book review for "The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century" , Science Monthly, 33, 12, pp. 1094-1095, 2002 Reference LinkReference Link
    3. Lu, H. H.-S., "Course Homepage for Topics of Statistics in Bioinformatics (Fall 2007)" , 2007 Reference LinkReference Link
    4. Lu, H. H.-S., "Course Homepage for Statistics (Fall 2010)" , 2010 Reference Link Reference Link
    5. Lu, H. H.-S., "Course Homepage for High Dimensional Data Analysis (Fall 2013)" , 2013 Reference LinkReference Link
    6. Lu, H. H.-S., "Course Homepage for Multivariate Analysis (Spring 2014)" , 2014 Reference LinkReference Link
    7. Lu, H. H.-S., and Hardle, W. K., "Course Homepage for Smart Data Analytics (SDA) I (Fall 2020)" , 2020 Reference LinkReference Link
    8. Lu, H. H.-S., "Course Homepage for Statistical Learning (Spring 2023)" , 2023 Reference LinkReference Link
    9. Lu, H. H.-S., "Course Homepage for Introduction to Data Science (Fall 2023)" , 2023 Reference LinkReference Link
    10. Lu, H. H.-S., "Course Homepage for Statistical Computing (Spring 2024)" , 2024 Reference LinkReference Link
    11. Lu, H. H.-S., "Course Homepage for Statistical Consulting (Fall, 2024)" , 2024 Reference LinkReference Link

 

 

The Chinese Version : http://misg.stat.nycu.edu.tw/index.html